본문으로 바로가기
평면표지(2D 앞표지)
입체표지(3D 표지)
2D 뒤표지

한 권으로 끝내는 실전 LLM 파인튜닝

GPT 작동 원리부터 Gemma 2 / Llama 3 파인튜닝, vLLM 서빙까지


  • ISBN-13
    979-11-5839-562-9 (93000)
  • 출판사 / 임프린트
    주식회사 위키아카데미 / 위키북스
  • 정가
    28,000 원 확정정가
  • 발행일
    2024-12-17
  • 출간상태
    출간
  • 저자
    강다솔
  • 번역
    -
  • 메인주제어
    기계학습
  • 추가주제어
    -
  • 키워드
    #파인튜닝 #LLM #Gemma #Llama #vLLM
  • 도서유형
    종이책, 무선제본
  • 대상연령
    모든 연령, 성인 일반 단행본
  • 도서상세정보
    175 * 235 mm, 348 Page

책소개

실무 현장에서 꼭 필요한 파인튜닝, PEFT, vLLM 서빙 기술을 직접 실습하면서 배워 보자!

 

AI 기술의 최전선에서 배우는 LLM 파인튜닝의 모든 것! 이론적 토대부터 실전 활용까지 단계별로 마스터할 수 있습니다.

 

◎ NLP의 역사적 발전과 역전파의 핵심 원리 마스터

◎ GPT 모델의 심층 이해: 셀프 어텐션, 토크나이저 구현부터 실전 응용까지

◎ Gemma 2와 Llama 3 최신 모델 분석과 GPU 병렬화 학습

◎ LoRA, QLoRA를 활용한 파인튜닝 기법 실습

◎ vLLM으로 실제 서비스에 적용 가능한 모델 서빙

 

Runpod 환경의 실습 프로젝트를 통해 이론과 실무를 동시에 학습할 수 있으며, 단일 GPU부터 다중 GPU 환경까지 실전에서 바로 활용 가능한 노하우를 제공합니다.

 

 

목차

▣ 01장: NLP의 과거와 오늘 

1.1 자연어 처리 발전의 주요 이정표 

1.2 초기 기계 번역의 역사와 전환점 

__1.2.1 아르츠루니와 트로얀스키의 연구 

__1.2.2 위버의 제안과 조지타운-IBM 실험 

__1.2.3 초기 기계 번역의 한계와 새로운 전환 

1.3 인공지능의 시작 

__1.3.1 튜링의 질문: 기계는 생각할 수 있는가? 

__1.3.2 튜링 테스트의 한계 

1.4 인공지능은 어떻게 학습하는가? 

__1.4.1 인공지능의 학습 메커니즘 발전 과정 

__1.4.2 퍼셉트론: 인공지능 학습의 첫걸음 

1.5 역전파 알고리즘: 학습의 혁명 

__1.5.1 비선형성: 더 똑똑한 인공지능을 만드는 열쇠 

__1.5.2 역전파 알고리즘 

1.6 트랜스포머의 등장: NLP의 새로운 시대 

 

▣ 02장: GPT 

2.1 런팟 소개와 사용법 

__2.1.1 런팟 회원 가입 

__2.1.2 크레딧 구매 

__2.1.3 포드 구성 

__2.1.4 주피터 랩 

2.2 데이터 준비와 모델 구성 

2.3 언어 모델 만들기 

__2.3.1 라이브러리 설명 

__2.3.2 __init__ 함수 

__2.3.3 forward 메서드 

__2.3.4 generate 메서드 

2.4 Optimizer 추가하기 

__2.4.1 데이터를 GPU로 전달하기 

__2.4.2 Loss 함수 만들기 

__2.4.3 전체 코드 복습 

2.5 셀프 어텐션 추가하기 

__2.5.1 문자들 간에 정보를 주고받는 방식(평균 방식) 

__2.5.2 행렬곱 연산으로 더 빠르게 정보를 주고받기 

__2.5.3 셀프 어텐션이란? 

__2.5.4 왜 dk 로 나눠야 하는가? 

__2.5.5 셀프 어텐션 적용하기 

2.6 멀티헤드 어텐션과 피드포워드 

__2.6.1 멀티헤드 어텐션 만들기 

__2.6.2 피드포워드 만들기 

2.7 Blocks 만들기 

2.8 토크나이저 만들기 

__2.8.1 vocab_size 변화에 따른 토큰화 비교 

__2.8.2 토크나이저 만들기 

 

▣ 03장: 전체 파인튜닝 

3.1 전체 파인튜닝 데이터 준비 

__3.1.1 전체 파인튜닝의 원리와 종류 

__3.1.2 다양한 태스크와 데이터셋 

__3.1.3 데이터 전처리 

3.2 Gemma와 Llama 3 모델 구조 분석 

__3.2.1 Gemma 모델 구조 분석 

__3.2.2 Gemma와 Gemma 2 모델 비교 

__3.2.3 Llama 3 모델 구조 분석 

__3.2.4 GPT, Gemma, Llama 비교

3.3 GPU 병렬화 기법 

__3.3.1 데이터 병렬 처리 

__3.3.2 모델 병렬화 

__3.3.3 파이프라인 병렬화 

__3.3.4 텐서 병렬 처리 

__3.3.5 FSDP 

3.4 단일 GPU를 활용한 Gemma-2B-it 파인튜닝 

__3.4.1 런팟 환경 설정 

__3.4.2 Gemma 모델 준비 

__3.4.3 데이터셋 준비 

__3.4.4 Gemma 모델의 기능 확인하기 

__3.4.5 키워드 데이터 생성 

__3.4.6 데이터 전처리 

__3.4.7 데이터셋 분리 및 콜레이터 설정 

__3.4.8 학습 파라미터 설정 

__3.4.9 평가 메트릭 정의 

__3.4.10 모델 학습 및 평가 

__3.4.11 파인튜닝한 모델 테스트 

3.5 다중 GPU를 활용한 Llama3.1-8B-instruct 파인튜닝 

__3.5.1 런팟 환경 설정 

__3.5.2 Llama 3.1 학습 파라미터 설정 

__3.5.3 데이터셋 준비 

__3.5.4 Llama 3.1 모델 파라미터 설정 

__3.5.5 Llama 3.1 모델 학습 코드 살펴보기 

__3.5.6 Llama 3.1 모델 학습 실행 

__3.5.7 Wandb 설정과 사용 

__3.5.8 학습한 Llama 3.1 모델 테스트 

__3.5.9 생성된 텍스트 데이터 OpenAI로 평가하기 

__3.5.10 채점 점수 구하기 

 

▣ 04장: 효율적인 파라미터 튜닝 기법(PEFT) 

4.1 LoRA 이론 및 실습 

__4.1.1 LoRA 개념 

__4.1.2 런팟 환경 설정 

__4.1.3 Gemma-2-9B-it 모델 준비 

__4.1.4 데이터 전처리 

__4.1.5 LoRA 파라미터 설정 

__4.1.6 모델 학습 

__4.1.7 학습한 모델 테스트하기 

__4.1.8 모델 성능을 OpenAI로 평가하기 

4.2 QLoRA 이론 및 실습 

__4.2.1 양자화의 이해 

__4.2.2 런팟 환경 설정 

__4.2.3 데이터셋 준비 

__4.2.4 양자화 파라미터 설정 

__4.2.5 모델 준비 

__4.2.6 파라미터 설정 

__4.2.7 모델 학습 

__4.2.8 허깅페이스 허브에 모델 업로드 

__4.2.9 학습한 모델 테스트 

__4.2.10 Exact Match를 활용한 평가 

__4.2.11 OpenAI API로 평가하기 

 

▣ 05장: vLLM을 활용한 서빙 

5.1 페이지드 어텐션 원리 

5.2 vLLM 사용 방법 

5.3 LLaMA3 생성 속도 가속화 

5.4 vLLM을 활용한 Multi-LoRA 

__5.4.1 Multi-LoRA 실습 

__5.4.2 노트북 환경에서 실습 

5.5 Multi-LoRA를 사용할 때 주의할 점 

 

▣ 부록 

역전파 수학적 리뷰 

역전파 코드 리뷰

본문인용

-

서평

“AI와 NLP의 이론부터 실전 구현까지, Runpod 등 실무 플랫폼을 활용한 실습으로 비즈니스와 연구 현장에서 바로 적용 가능한 실전 지침서입니다.”

— 강진범(브릭메이트 CTO)

 

“AI의 역사부터 최신 언어 모델까지, 딥러닝과 PyTorch를 처음 접하는 독자도 쉽게 이해하고 실습할 수 있는 한국어 중심의 종합 입문서입니다.”

— 이준범(AI/ML GDE)

 

“AI가 필수가 된 시대에, 초보자도 이론부터 실무까지 쉽게 따라할 수 있는 실용적인 NLP와 클라우드 환경의 AI 모델 구축 안내서입니다.”

— 염경현(Amazon Web Services CSE)

 

“파인튜닝의 기초 개념부터 다중 GPU 활용과 vLLM 서빙까지, 한국어로 쉽게 풀어쓴 체계적인 LLM 파인튜닝 가이드북입니다.”

— 이경록(YouTube 테디노트 Creator)

 

“LLaMA3까지 다루는 깊이 있는 이론과 Runpod 환경의 실습을 통해 파인튜닝, PEFT, vLLM 서빙 등 실무에서 즉시 활용 가능한 기술을 체계적으로 배울 수 있는 실무 안내서입니다.”

— 유원준(네이버클라우드 NLP 엔지니어)

저자소개

저자 : 강다솔
구글 부트캠프 1기 수료를 시작으로, 하나은행 챗봇 프로젝트와 함께 금융, 로봇, 교육 등 다양한 분야에서 AI 프로젝트를 수행했습니다. 자연어 처리(NLP)와 멀티모달 분야에 깊은 관심을 가지고 있으며, 현재는 실전 경험을 바탕으로 LLM 파인튜닝 기술 연구에 집중하고 있습니다.
상단으로 이동